Comparative Analysis of Strategies for JE Vaccination for U.S. Travelers to Asia

Cristina Carias, Bishwa Adhikari, Emily Kahn, Martin Meltzer - Health Economics Modeling Unit

Susan Hills, Marc Fischer - Arboviral Diseases Branch

CDC/NCEZID

DISCLAIMER: The results and conclusions presented here are those of the authors and are not necessarily those of the Centers for Disease Control and Prevention

CONFLICTS: The authors declare no conflicts of interest to disclose

Objective

To compare numbers needed to vaccinate and cost-effectiveness of strategies for JE vaccination for U.S. travelers to Asia

Design

- Modeling approach: Decision Tree
- Hypothetical population
 - Compare cases in vaccinated and unvaccinated cohorts of 1 million individuals
- Strategy/assumptions
 - 2-dose primary vaccination schedule
 - All individuals travel in year 1
 - Some individuals travel again after year 1
 - Repeat travelers may receive booster dose
- Analytic horizon

Analytic Perspectives*

	Societal	Travelers '
Vaccine cost per dose	Included	Included
Vaccine administration cost	Included	Included
Vaccine adverse event costs per vaccinee	Included	Included [†]
Short-term and long-term medical costs	Included	-
Productivity costs with complete recovery	Included	Included
Productivity costs with mild sequelae	Included	Included
Life-time productivity costs with severe sequelae	Included	Included
Life-time productivity costs with death	Included	-

*Medical payer perspective included in Appendix [†]Costs partially attributed to the traveler with remainder to the medical payer

Decision Tree: Schematic

CENTERS FOR DISEASE

Epidemiologic Data: Disease Incidence By Risk

Category	Incidence of JE (per million travelers)
Risk group I*	0.53
Risk group II†	0.25
Risk group III [‡]	0.04

*Travelers who plan to spend \geq 1 month in JE endemic areas

[†]Shorter-term travelers (<1 month) who plan to spend >20% time doing outdoor activities in rural areas

[‡]Remaining travelers to JE endemic areas not in risk group I or II

Sources: Hills SL. CDC Yellow Book 2018; US National Travel and Tourism Office; Duffy M. J Travel Med 2013 (unpublished data); CDC. MMWR Rec Rep 2010.

Epidemiologic Data: Disease Outcome Probabilities

Epidemiologic Data: Vaccine Effectiveness By Year

Year post-vaccination	Effectiveness*
Year 1	0.91
Without booster dose	
Year 2	0.75
Year 3	0.68
Year 4	0.72
Year 5	0.69
Year 6	0.64
With booster dose	
Years 2–6	0.96

*Proportion of vaccinees with protective neutralizing antibodies

Sources: Schuller E. Vaccine 2008; Dubischar-Kastner K.60th ASTMH Annual Meeting 2011; Paulke-Korinek M. Vaccine 2015.

Epidemiologic Data: Assumptions*

Likelihood of annual return travel to JE endemic areas 40%

Likelihood of receiving booster dose, given return travel 100%

*Extensive sensitivity analyses were performed on these parameters

Economic Data: Medical Costs

	Estimated costs (US 2016 \$)
Vaccine cost per dose	\$292
Vaccine administration fee per dose	\$46
Vaccine adverse effects per vaccinee	\$0.01†
Short-term medical costs of JE treatment*	\$29,992
Long-term medical costs of mild sequelae*	\$1,687
Long-term medical costs of severe sequelae*	\$8,437

[†]See appendix for details ^{*}Assumes clinical syndrome of encephalitis

Sources: Drug Topics Red Book. Medical Economics Co, 1995, online; Coleman MS. Vaccine 2005; Staples JE. Am J Trop Med Hyg 2014.

Economic Data: Productivity Costs*

	Estimated costs (US 2016 \$)
Short-term productivity costs [†]	
Complete recovery	\$59,090
Mild sequelae	\$59,090
Lifetime productivity costs	
Severe sequelae [†]	\$1,183,294
Death [‡]	\$1,688,566

*Assumes median age of JE case is 33 years [†]Based on market productivity [‡]Based on total productivity (household + market)

Sources: Grosse SD. Med Care 2009; Staples JE. Am J Trop Med Hyg 2014 (Table 5).

Results

Results: Numbers needed to vaccinate to prevent one JE-related health outcome

Health outcome	Risk group I	Risk group II	Risk group III
JE case	735,994	1,560,306	9,751,912
Long-term sequelae	1,615,439	3,424,729	21,404,548
Death	2,230,284	4,728,201	29,551,248

Category	Incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Results: Cost per outcome averted (\$ millions) Societal perspective				
Health outcome Risk group I Risk group II Risk group I				
JE case	\$596	\$1,264	\$7,905	
Long-term sequelae	\$1,307	\$2,774	\$17,351	
Death	\$1,805	\$3,830	\$23,954	

Category	Incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Results: Cost per outcome averted (\$ millions)			
Travelers' perspective			
Health outcome	Risk group I	Risk group II	Risk group III
JE case	\$596	\$1,265	\$7,905
Long-term sequelae	\$1,309	\$2,776	\$17,352
Death	\$1,807	\$3,832	\$23,956

Category	Incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Sensitivity analysis: Cost per case averted (\$ millions) Risk group I, Societal perspective

Cost per JE case averted (\$Millions)

*Allowing a 100-fold increase in JE incidence allows for the potential effects of underreporting and variability in true incidence

Sensitivity analysis: Cost per JE case averted (\$ millions) with increased disease incidence

Societal perspective

JE Incidence	Risk group I	Risk group II	Risk group III
Base incidence	\$596	\$1,264	\$7,905
10 times higher	\$59	\$125	\$790
100 times higher	\$5	\$12	\$78

Category	Base incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Sensitivity analysis: Cost per JE case averted (\$ millions) with increased medical costs

Societal perspective

Costs	Risk group I	Risk group II	Risk group III
Base medical costs	\$596	\$1,264	\$7,905
10 times higher*	\$595	\$1,264	\$7,905
100 times higher*	\$592	\$1,261	\$7,902

*Includes short-term and long-term medical costs

Category	Base incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Sensitivity analysis: Cost per case averted with varying probability of medical costs and disease incidence (\$ millions) Risk group I, Societal perspective

			Incidence	
		Base	10x higher	100x higher
	Base	\$596	\$59	\$5
Medical costs 10x high	10x higher*	\$595	\$58	\$5
	100x higher*	\$592	\$55	\$2

*Includes short-term and long-term medical costs

Sensitivity analysis: Cost per JE case averted (\$ millions) with reduced vaccine cost*

Societal perspective

Vaccine dose costs	Risk group I	Risk group II	Risk group III
Base cost (\$292 per dose)	\$596	\$1,264	\$7,905
50% reduced (\$146 per dose)	\$338	\$717	\$4,487
90% reduced (\$29 per dose)	\$131	\$279	\$1,752

*Includes vaccine administration (\$45.66) and adverse event (\$0.01) costs per vaccinee

Cost per case averted (\$ millions), societal perspective

		Probabili	ty of gettin	g the booster	+
	0	0.2	0.4	0.6	0.8
Probability	0.2	800	807	814	821
of travel	0.4	562	571	580	588
	0.6	434	444	453	461
	0.8				

Cost per case averted:

- Decreases with increased probability of yearly travel
- Increases with probability of getting the booster

Sensitivity Analyses: Mixed cohort* Incremental cost effectiveness analysis

Societal perspective

Risk group vaccinated in traveler cohort	Cases averted per 1 million traveler cohort*	Cost of vaccination per 1 million traveler cohort (\$ millions) #*	Cost per case averted (\$ millions)*@	Incremental cost effectiveness ratio (\$ millions) [¶]
Risk group I	0.26	\$185	\$596	-
Risk group I+II	0.43	\$426	\$850	\$1,562
Risk group I+II+III	0.48	\$949	\$1,673	\$14,569

*Mixed cohort: 1 million, 19.5% irRisk group J 25.4% irRisk groupII; 55.1% irRisk group III

#Costof vaccination: *first year*-2 vaccine doses, admin. costs and adverse effects; second year (40% repeat travelers) – 1 vaccine booster dose and admin. and adverse effects costs

@Cases averted: measured over 6 years (duration of immunity, assuming repeat travel likelihood of 40% each year) ¶Additional cost to prevent one additional JE case by expanding the vaccination program to another risk group

Category	Base incidence
Risk group I	0.53 per million
Risk group II	0.25 per million
Risk group III	0.04 per million

Limitations

- Results affected by uncertainty regarding JE incidence
- Current proportion of travelers who get JE vaccine is unknown
- Only includes possible vaccine booster dose in Year 2
- Long-term medicals costs only include costs for the first 5 years

ACIP Guidelines

- Study performed according to ACIP guidelines and underwent peer-review inside CDC
- Main comments from peer-review were:
 - Clarify assumptions regarding number of doses administered to vaccinees
 - Increase breadth of sensitivity analyses regarding vaccine administration costs and medical costs
 - Explain why medical costs were not discounted

Conclusions

- Cost per JE case averted: \$596M (Risk group I) to \$7,905M (Risk group III) (Societal perspective)
- Number needed to vaccinate: ~736,000 (Risk group 1) to ~9.8 million (Risk group III)
- Most important variable: incidence
- Smaller impact of other variables including:
 - increased likelihood of returning travel
 - increased medical costs
 - · decreased likelihood of getting booster

